ברוכים הבאים! בלוג זה נועד לספק משאבים לפסיכולוגים חינוכיים ואחרים בנושאים הקשורים לדיאגנוסטיקה באורייטנצית CHC אבל לא רק.

בבלוג יוצגו מאמרים נבחרים וכן מצגות שלי וחומרים נוספים.

אם אתם חדשים כאן, אני ממליצה לכם לעיין בסדרת המצגות המופיעה בטור הימני, שכותרתה "משכל ויכולות קוגניטיביות".

Welcome! This blog is intended to provide assessment resources for Educational and other psychologists.

The material is CHC - oriented , but not entirely so.

The blog features selected papers, presentations made by me and other materials.

If you're new here, I suggest reading the presentation series in the right hand column – "intelligence and cognitive abilities".

נהנית מהבלוג? למה שלא תעקוב/תעקבי אחרי?

Enjoy this blog? Become a follower!

Followers

Search This Blog

Featured Post

קובץ פוסטים על מבחן הוודקוק

      רוצים לדעת יותר על מבחן הוודקוק? לנוחותכם ריכזתי כאן קובץ פוסטים שעוסקים במבחן:   1.      קשרים בין יכולות קוגניטיביות במבחן ה...

Thursday, July 9, 2015

Familiar and unfamiliar numbers. Numbers and non- numbers. Are there such things?



An interesting video with Dr. Sarah Wiseman from one of my favorite sites, NUMBERPHILE.  


Dr Wiseman argues that we respond differently when we read familiar and unfamiliar numbers (the unfamiliar numbers are non-numbers, like non-words)!

We can read the number 1492 in four ways:

As a series of digits (1, 4, 9, 2).

As a number word (one thousand four hundred and ninety two).  This kind of reading requires an understanding of the decimal numeral system.

As a number with a mathematical meaning (for example,  it's an even number, less than 2000, 1000+492 etc.)

And as a familiar number, with an encyclopedic meaning -   the number's meaning in our culture (the year Columbus discovered America, and also the year the Jews were expelled from Spain).








 A familiar number can have a personal meaning for us (for example, our ID number, the ages of our children or our address).

When reading the number 1492 in its encyclopedic meaning, we don't refer to its quantitative meaning but rather read it as a word.  Dr Wiseman talks about a person with number aphasia, who can read numbers only when they have an encyclopedic meaning for him.

It's possible, that a similar thing occurs with dyscalculic children – an easier reading of familiar numbers, via their encyclopedic meaning, compared with difficulty reading unfamiliar numbers (since the encyclopedic route is not available for these "non-numbers"' and since reading them requires using the base 10 system, that is, their quantitative meaning).

I wonder if we read familiar numbers faster than unfamiliar numbers, and if the encyclopedic meaning of familiar numbers influences (or maybe disrupts) the processing of their quantitative meaning.


No comments:

Post a Comment